"Pushing for Progression" in number sense and fluency b Development Programme sense and fluency Maths Club Development Programme

Multiplication and Division

Name

School

District

Declaration
This booklet is not sold or used for profit making. It is used solely for educational purposes. You may photocopy pages if you wish.

2016 South African Numeracy Chair Project, Grahamstown, South Africa www.ru.ac.za/sanc Last updated: 3RD JUNE 2016

To cite this document:
South African Numeracy Chair Project. (2016). "Pushing for Progression" in number sense and fluency Maths Club Development Programme: Session Three Teacher Handbook. Grahamstown, South Africa: South African Numeracy Chair Project (Rhodes University).

Table of contents

Big ideas in multiplication and division 3
Using arrays to teach multiplication and division 4
Key ideas about arrays 4
FP - Introducing multiplication with a context that lends itself to arrays 5
Arrays in the intermediate phase 7
The distributive and commutative properties with arrays 7
Using arrays to do multi-digit multiplication 8
Progression in multiplication and division 9
Strategies for learning tables 10
References 10
Club sessions 10 to 15: mathematical focus 11
Overviews 12
Foundation Phase session plans 13
Intermediate Phase session plans 20
ACTIVITY MASTER COPIES 27
FP AN APPLE A DAY 28
IP 2, 4 and 8 I have who has loop cards 29
IP 3, 6 and 12 I have who has loop cards 31
FP Halving and doubling I have who has loop cards - numbers up to 22 33
FP / IP Halving and doubling I have who has loop cards - numbers up to 100 35
IP MULTIPLICATION BOARD GAME 37
IP Grid Method: 2×1 digit 38
IP Grid Method: 2×2 digits 39
IP Grid Method 3×1 digit 40
IP Grid Method: 3×2 digits 41
FP \& IP HOW CLOSE TO 100 42
IP NUMBER PATTERN INVESTIGATIONS 43
IP NUMBER PATTERN INVESTIGATIONS continued 44
IP ADD AND MULTIPLY PUZZLES 45
FP BEE ARRAYS 47
IP ARRAY HOORAY (1) - Match the multiplication fact to the array 48
IP ARRAY HOORAY (2) - Use the arrays to write different types of facts. 49
FP ARRAY HOORAY (1) - Match the multiplication fact to the array 50
FP ARRAY HOORAY (2) - Use the arrays to write different types of facts. 51
IP 2, 4, 8 SCORECARDS 52
FP FIND ARRAYS (1) 53
FP FIND ARRAYS (2) 54
FP SKIP COUNTING MAZES 55
FP SKIP COUNTING MAZES CONTINUED 56

Big ideas in multiplication and division

"Multiplication and division are critical foundations for more difficult concepts in number, algebra, measurement, and statistics. Thinking multiplicatively involves many different mathematical ideas as well as constructing and manipulating factors (the numbers that are multiplied) in response to a variety of contexts" (Numeracy Professional Development Projects, 2007, p. 3)

In this series of club sessions, we focus on some of the big ideas in multiplication and division.

- Developing the ability to "unitise".
"coming to regard numbers as units, that is, as single whole objects that can be counted. For example, when a student counts how many 3 s in 12 as one 3 , two 3 s , three $3 s$, four $3 s$; the 3 s are regarded as units. Unitizing can involve, for example, reasoning that if there are four $3 s$ in 12 , then there are eight $3 s$ in 24 , which involves counting units of units. Tasks to elicit unitizing include counting rows in arrays, and drawing attention to the unitary aspect alongside the composite aspect of numbers" (Ellemor-Collins \& Wright, 2011, p. 5).
- Understanding the commutative, associative and distributive properties in multiplication
- Recognising multiplication and division as inverse operations and using this to solve problems.
- Understanding the place value patterns that occur when multiplying and dividing by ten or 100
- Looking for and recognising patterns and connections within and between tables. The recognition of pattern in multiplication helps learners remember facts. For example $5 x$ is half of $10 x$ OR doubling twice is the same as multiplying by four
- Making connections and understanding relationships between the other operations

"Groups of" or "count in..." models are additive i.e. we
add another three each time.
Skip counting and the "Groups of" model is often used
to introduce multiplication, yet these are both additive
or linear models. Issues arise when numbers begin to
get bigger and they cannot assist in visualising the
commutative properties of multiplication.

Arrays are defined as a set of numbers or shapes laid out in a rectangle. For early multiplication purposes, an array will consist of shapes or dots. Arrays are a simple yet powerful visual aid for helping children to understand how multiplication (and fractions) work by encouraging multiplicative thinking.

It is convention to read the array with rows first and then columns.

The array to the right represents 3×4 (3 rows of four), with 12 squares altogether.

Key ideas about arrays

Additive or linear models of multiplication (such as the "groups of" model) do not help develop further understandings of the underlying patterns of multiplication, which is key to future work in mathematics. Arrays lend themselves to multiplicative understandings rather than additive understanding.

- Arrays are an important conceptual, two-dimensional step between modelling multiplication with concrete objects, to using an area model for multiplication and finally onto algorithms. (More on the area / grid model below.)
- They are important for understanding:
- Factors and products
- Both the communicative and distributive properties
- conservation and visualisation of the area of any 2D shape
- conservation and visualisation of fractions (e.g. understand that one half cut vertically and one half cut horizontally really are the same size)
- algebraic concepts such as x squared. This means a square with a side length of x. This also means that $3 x$ is a rectangle with one side of 3 and the other of x .

FP - Introducing multiplication with a context that lends itself to arrays

Mike Askew indicates that research suggests this process for introducing multiplication.
Rather than starting off with the abstract calculation and then setting up a physical model or diagram to represent it, we are better off starting with simple contexts that can be described and talked about and then represented by a multiplication sentence. In other words, rather than starting from what children do not know (what ' 4×5 ' means) we begin with something they are familiar with and help them move to the symbolic.

Take, for example, this context problem:
A baker is putting muffins on a tray to put in the oven. A tray holds four rows of five muffins. How many muffins can the baker put onto a full tray?

This context lends itself nicely to children modelling it as a four by five array, either with physical objects or drawings. The discussion would then be around how many muffins there are altogether and whether or not anyone had a quick way to find the total that did not involve counting each muffin singly. Taking the children's explanations can lead to introducing the notation of multiplication out of what they saw and did. For example, a child might say that they added five and five and five and five, recorded as $5+5+5+5$.
Another may say that they saw two groups of 10 , each arising from pairs of fives. Marking this up on an image, children can see this recorded as:

Similarly, other 'seeings' might include $4+4+4+4+4$. From here it is a short step to introducing 4×5 or 5×4 as a quick way of recording the repeated additions.
The context of muffins on a tray is not arbitrary. Compare this
 with, say:

The baker is putting muffins into bags. She puts five muffins into each bag and fills four bags. How many muffins is that?
The model or image that this lends itself to is something like:
While this is fine, because it is less structured it does not lend itself to the variety of ways of seeing, describing and finding the total as the array does. It is also unlikely to lead to a conversation about 4×5 being the same as 5×4. The equivalence of these two statements is self-evident in the tray of muffins, but far from
 obvious in the context of bags of muffins. Rotating the array through a quarter turn clearly leaves the number of muffins unchanged, but it is not so immediately obvious that four bags of five must contain the same number of muffins as five bags of four.

Other contexts that lend themselves to being modelled as arrays include rows of chairs, square tiles on a floor, and windows made up of small panes. A search on the internet can produce many suitable images that, introduced one at a time over a series of days, will provoke rich conversations about 'shortcuts' to counting the total number of items and allow you to drip-feed the notation of multiplication to represent the array.

Source: Signs of the times article (by Mike Askew)
http://www.teachprimary.com/resource_uploads/signs-of-the-times.pdf

By introducing multiplication through simple contexts, we can help children to understand the close connection between multiplication and division.

Problems such as these help develop this understanding:
Bulewa the grocer is putting apples into bags. Bulewa puts nine apples in each bag and fills five bags altogether. How many apples does Bulewa put into bags?
Bulewa also bags up some pears. Bulewa puts nine pears in each bag and has 45 pears to put into bags. How many bags of pears can Bulewa fill?

Bulewa is putting oranges into bags. Bulewa has 45 oranges and five bags. If Bulewa puts the same number of oranges into each bag, how many oranges are in one bag?

The same context - putting fruit into bags - described in these different ways provides a context to talk about the relationship between multiplication and division.

Any multiplication calculation can give rise to essentially two different types of division problems. When Bulewa is putting pears into bags, the number of pears in each bag is already known - this is a division as repeated subtraction (or quotitioning) problem. The size of the 'share' (or quota) is known - nine pears. What we do not know is how many of these 'shares' can be made from 45 pears.

In the case of the oranges, the number of shares (bags) is known - five - but we don't know the number to put into each bag. This is an example of division as sharing or partitioning (the 45 oranges need to be partitioned into five groups, each containing an equal number).

The array can help make clear the connections here.
9

$?$

Source: (Askew, 2011)
http://www.teachprimary.com/resource_uploads/signs-of-the-times.pdf

Arrays in the intermediate phase

If arrays are introduced in the Foundation Phase as contexts for doing multiplication and division, they can assist in deepening understanding in the intermediate grades with a specific focus on the distributive and commutative properties. Additionally, when used in a more abstract way, they can be used to model and practice multi-digit multiplication before the introduction of the long multiplication algorithm.

The distributive and commutative properties with arrays

The Grade 4 to 6 Mathematics CAPS document indicates that learners need to understand these properties but it is not necessary to know the terms.

The distributive property
An array can be split into smaller parts based on place value or other facts to represent the distributive property.

How might you split this array to work out 4×8 ?

$8 \times 4=(4 \times 4)+(4 \times 4)$

The commutative property
Any array can be turned by 90° to illustrate the commutative property.

Using arrays to do multi-digit multiplication

The area model provides a transition from concrete representations of arrays to a more abstract representation, which discourages learners from counting the dots/ shapes in the array. It is a useful step between arrays and more formal long multiplication algorithms.

Instead of using (and drawing) all the dots / shapes in an array, it is easier to represent it conceptually using an area model by breaking each number into its place value components and seeing invisible dots / shapes, as shown with this example for 18×12 :

1 - Break the numbers into sectors by place value

18 is broken into place value components of 10 and 8 across the top (representing columns) 12 is broken into place value components of 10 and 2 down the side (representing rows)
3 - Add the values from the individual sectors in rows

10		8	
10	$10 \times 10=100$	$10 \times 8=80$	$100+80=180$
2	$2 \times 10=20$	$2 \times 8=16$	$20+16=36$

The invisible dots / shapes in each separate array are multiplied and added across the rows to arrive at 180 and 36 respectively.

2 - Multiply the rows and columns for each sector of the grid

18×12

4 - Add the totals from the two rows to arrive at the answer

$180+36=216$
The row values are added together to give a final answer of 216 .

This method of multiplying has direct links to the long multiplication algorithm and to algebraic multiplication as shown below.

Linking to long multiplication

18	
$\times 12$	
100	(10×10)
80	(10×8)
20	(2×10)
16	(2×8)
216	

Linking to algebraic multiplication

Progression in multiplication and division

As with addition and subtraction, the focus here is to progress learners from using tallies and drawings (and seeing items as individual pieces) to unitising, using repeated addition and skip counting, through to arrays, flexible use of multiplication facts and appropriate use of algorithms.

Constrained methods	Less constrained	Semi fluent methods	Flexible fluency
Inefficient (l)	Somewhere in between (IE)		Efficient (E)
Use of fingers, tally marks, circles, drawings of any kind	Skip counting, repeated addition	Arrays, breaking down into expanded notation	Use of known multiplication and division facts, appropriate use of algorithms for 2 and 3 digit problems
-			
Counting in 15 No sense of groups	Recognising groups / counting in groups	Recognising arrays of rows and columns Recognising patterns of multiplication and knowing key tables ($\mathrm{x} 5, \times 10, \mathrm{x} 100$ doubling etc.)	Solving multiplicative problems using efficient strategies including for example: * expansion (or grid method) * combinations of known facts (e.g. times 12 is x 10 and add double) * standard algorithm (short \& long forms)

Strategies for learning tables

It is possible for learners to learn other tables by working from ones that are easier to learn (such as 2,3 and 10) by using doubling strategies and seeing patterns.
$10 \times$ table
Draw on place value to help learners understand what happens when multiplying by 10.
5 and $10 \times$ tables
It is possible to work out the 5 times table by multiplying by 10 first and then having the answer. This works because 5 is half of 10 .
e.g. $14 \times 5 . \quad 14 \times 10=140$, half of 140 is 70 , so 14×5 is 70 .

2,4 and $8 \times$ tables and 3,6 and $12 \times$ tables
Use a double and double again strategy. Use arrays to model how this works if necessary
$2 \times 2=4$

4 is double 2 , answer is doubled as well
(8) $\times 2=16$
8 is double 4, answer is doubled as well

$$
\begin{aligned}
& 3 \times 2=6 \\
& 6 \times 2=12 \quad \begin{array}{l}
6 \text { is double } 3 \\
\text { answer is doubled as well } \\
12 \text { is double } 6, \\
\text { answer is doubled as well }
\end{array} \\
& 12 \times 2=24 \quad \begin{array}{l}
12
\end{array}
\end{aligned}
$$

7 x table

Encourage learners to use commutativity to learn this one. Make the connections between the 7 and other multiplication tables.

References

Askew, M. (2011, September). Signs of the times. Teach Primary, 97(26), 34; 35; 37. Retrieved from http://www.teachprimary.com/resource_uploads/signs-of-the-times.pdf

Ellemor-Collins, D., \& Wright, R. J. (2011). Unpacking mathematisation: An experimental framework for Arithmetic Instruction. In Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 1-8). Ankara, Turkey.

Numeracy Professional Development Projects. (2007). Book 6: Teaching multiplication and division. Revised Edition 2007. Wellington, New Zealand: Ministry of Education, New Zealand.

Club sessions 10 to 15: mathematical focus

The overall object of learning for this series of clubs is detailed on this page. The activities detailed in this booklet help to focus on these big ideas and are intended to help you as the club leader to encourage learners to progress from using tallies to more efficient strategies for multiplication and division.

At the start of each session, check the PURPOSE OF THE SESSION / OBJECT OF LEARNING and APPROACH TO RUNNING THE SESSION boxes at the top of each planning sheet to set your focus for each session.

Club Overviews: Session 10 to 15 Page: 12	
Foundation Phase	Intermediate Phase
Session Ten	Session Ten
Page: 13	Page: 20

Object of learning for all these sessions:

- Working with the array model to develop multiplicative thinking in learners
- Emphasis on using doubling strategies for learning multiplication facts in 4,and 8,6 and 12 times tables.
- Developing number sense across a range of numbers using different operations
- All card and dice games are intended to promote learners' fluency in using number facts, especially multiplication tables

Overviews

The session overviews are shown here for Grade 1 through to the IP grades. This means that if you encounter a learner who needs to be extended or remediated in your clubs, you have access to other activities that can be useful.

Grade 1

	Session 10	Session 11	Session 12	Session 13	Session 14	Session 15
	Timings based on a 60 minute club					
Mental warmup	"TEN"	SKIP COUNTING IN 2 s , 5 s and 10 s	DOUBLES/HALVES NUMBER SENSE GRID	FIZZ POP DOUBLING and $\times 2$		"TWELVE"
Time	5 mins	5 mins	5 mins	10 mins		15 mins
Games	NAUGHTY THREES	TOTAL THREE	build arrays game	bee arrays	HOW CLOSE TO 100	ASSESSMENT
Time	15 mins	20 mins	20 mins	25 mins	30 mins	35 mins
Activities	PIES AND MUFFINS	MORE ARRAYS	ARRAY CARD LAYOUTS 12 and 18	FIND ARRAYS	ARRAYS HOORAY	SKIP COUNTING MAZES
Time	30-40 mins	20 mins	25 mins	20 mins	30 mins	10 mins
Pay it Forward	NAUGHTY THREES	TOTAL THREE	BuIL ARrays game			
Take home work	Homework book(s)					

Grades 2 and 3

	Session 10	Session 11	Session 12	Session 13	Session 14	Session 15
	Timings based on a 60 minute club					
Mental warmup	"EIGHTEEN"	I HAVE, WHO HAS: DOUBLES AND HALVES	doubles/halves NUMBER SENSE GRID	FIZZ POP DOUBLING and $\times 2$		'TWENTY FOUR"
Time	15 mins	15 mins	10-15 mins	10 mins		15 mins
Games	NAUGHTY THREES	total three	build arrays game	bee arrays	HOW CLOSE TO 100	ASSESSMENT
Time	15 mins	20 mins	20 mins	25 mins	30 mins	35 mins
Activities	PIES AND MUFFINS	array scavenger HUNT	ARRAY CARD LAYOUTS 12 and 18	FIND ARRAYS	ARRAYS HOORAY	SKIP COUNTING MAZES
Time	30 mins	20 mins	25 mins	20 mins	30 mins	10 mins
Pay it Forward	naughty threes	TOTAL THREE	BUILD ARRAYS GAME			
Take home work			Homewo	book(s)		

Intermediate Phase

	Session 10	Session 11	Session 12	Session 13	Session 14	Session 15
	Timings based on a 60 minute club					
Mental warmup	"TWENTY FOUR"	I HAVE WHO HAS 2, 4, 8 tables	NUMBER SENSE MULTIPLICATION GRID	$\begin{aligned} & \text { FIND } 90 \\ & + \\ & \text { AND } \end{aligned}$	I HAVE WHO HAS 3, 6 , 12 TABLES	$\begin{gathered} \text { FIZZ POP } \\ \times 10, \times 100 \end{gathered}$
Time	10 mins	10 mins	10 mins	20 mins	15 mins	5 mins
Games	NUMBER PATTERN investigations	2, 4, 8 CARD GAME	HOW CLOSE TO 100		MULTIPLCATION DICE GAME	ASSESSMENT
Time	20 mins	20 mins	25 mins		20 mins	35 mins
Activities	ARRAY SCAVENGER HUNT	ARRAY CARD LAYOUTS 18, 24 and 36	ARRAYS HOORAY	GRID METHOD (1)	GRID METHOD (2)	ADDITION AND mULTIPLICATION puzzles
Time	30 mins	30 mins	25 mins	40 mins	25 mins	20 mins
Pay it Forward		2, 4, 8 CARD GAME				
Take home work	Homework book(s)					

Foundation Phase session plans

FP	Maths Club Whole Session Planning Sheet			Session Ten
\| Purpose of the session / lobject of learning	Key focus is the introduction of arrays to the FP learners using familiar contexts			
What resources / manipulatives will you need?		Home sharing/ Pay It Forward task		
- NUMBER SENSE: white/blackboard or flipchart - NAUGHTY THREES: 2 dice per pair - NUMBER SENSE: pencils, scrap paper - MUFFINS \& PIES: activity sheets in plastic sleeves, egg boxes, ice trays etc		Learners can play NAUGHTY THREES at home. Learners can look for and work out arrays at home.		
Organisational requirements		Your approach to running the session		
1. NUMBER SENSE: indiv - \cdot NAUGHTY THREES: pla 1- NUMBER SENSE: indivi - \cdot MUFFINS \& PIES: Who	dual then whole group y in pairs / groups of 3 dual work group	The most important aspect of this session is introducing the arrays through the Muffins \& Pies activity. If time is short, leave out the dice game.		
\|Number sense: "TEN" or "EIGHTEEN" - 15 minutes				
\|GRADE 1 Write the number 10 Give learners 5 minu ways to make 10 usin can come up with m	on the board or flipchart es to come up with at least two g addition and subtraction. They ore if they wish.	GRADES 2 \& 3 - Write the number 18 on the board or flipchart - Give learners 5 minutes to come up with at least one way to make 18 using addition, subtraction and if possible multiplication. They can come up with more if they wish.		
1- Ask for contributions and write them on the board in a way that emphasises patterns (see example for 16 to the right), asking learners if they agree with the contribution. When you write a contribution on the board, always get them to check their and tick off if they have the same idea.				
Game: NAUGHTY THREES - 15 minutes (GRADES 1, 2 AND 3)				
\| Practice addition / skip counting in 5s Take turns to throw both dice Players only score when two identical numbers are thrown e.g. two 1's, two 2's and so on First player to a score of 30 wins VARIATIONS: Change values of the dice to practice other skip counting sequences e.g. 2 s , 3 s and 4 s Change the target score to a bigger or smaller number			Throw... Two 1s Two 2s Two 3s${ }^{\text {Two 4s }}$ Two 5s Two 6S	5 points 5 points wipe out score and start again 5 points 5 points 25 points
\|Activity: MUFFINS \& PIES - 30 minutes (GRADES 1,2 and 3)				
Use this time to introduce learners to the ideas of arrays using familiar contexts. Work through the example on page 5.				

5	Maths Club Whole Session Planning Sheet				Session Eleven	
\| Purpose of the session	/ object of learning	Once again the focus is on working with arrays as a means of understanding multiplication				
What resources / manipulatives will you need?			Home sharing/ Pay It Forward task			
1- GR2,3 MENTAL: Double and halving I have who has loop cards - TOTAL THREE: Scrap paper, pencils, 2 dice per pair 1- GR1 MORE ARRAYS: Activity in plastic sleeve, kokis, cloth 1- GR2,3 ARRAY SCAVENGER HUNT: black/whiteboard or flipchart			Learners play TOTAL THREE at home			
Organisational requirements			Your approach to running the session			
- TOTAL THREE: Pair work I- MORE ARRAYS: Individual - ARRAY SCAVENGER HUNT: whole group			The most important aspect of the session is the work with arrays. If time is short, leave out the dice game.			
Mental: SKIP COUNTING - 5 minutes (GRADE 1)						
Practice counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s 1- Organise the learners into a circle						
Skip counting in 2s: leach learner puts up th a fist, count around the (i.e. counting 2 hands	eir hands in circle in $2 s$ at a time)	Skip counting in 5s: each learner shows all fingers on both hands, count around the circle in 5 s (i.e. counting 5 fingers at a time)		Skip counting in 10s: each learner shows all fingers on both hands, count around the circle in 10 s (i.e. counting 10 fingers on both hand at a time)		
Mental: I HAVE, WHO HAS CARDS FOR DOUBLES AND HALVES - 10 minutes (GRADE 2 and 3)						
USe the Double and Halves I have, who has loop cards for this session. 1. Hand out one card to each learner, including yourself. If you have extras, give a second to a number of learners. 1. The person who has the card labelled "START" begins by reading what is on their card. E.g. "who has Double 6?" Learners must check their cards for the answer to Double 6 and read what is on their card e.g. "I have 12. Who has Double 3?" 1. The game continues until play returns to the person who started.						
Game: TOTAL THREE -20 minutes (Grades 1, 2 and 3)						
Take turns to roll the two dice. Do the following calculations each time you roll: - Add the two numbers shown on the dice - Find the difference between the two numbers - Multiply the two numbers OR skip count (Grade 1) - Add the three numbers to get a score for that round - After 10 rounds the player with the highest total is the winner VARIATION To make the activity more challenging use $8,10,12$ or 20 -sided dice				For e RoIl $6+3$ $6-3$ 6×3 6,12, Score $9+3$	For example RoIl $: \vdots$ and \because $6+3=9$ $6-3=3$ $6 \times 3=18$ OR $6,12,18(3,6,9,12,15,18)$ Score is: $9+3+18=30$	
Activity: MORE ARRAYS - 30 minutes (GRADE 1)						
Work through the AN APPLE A DAY activity						
Activity: ARRAY SCAVENGER HUNT - (GRADE 2 and 3)						
On the next page \rightarrow or AN APPLE A DAY						

Activity: ARRAY SCAVENGER HUNT - 30 minutes (GRADE 2 and 3)

- Draw a rectangle on the board. Ask the learners what shape it is, and discuss the differences between squares and rectangles. If the learners are unsure, ask them what they can see that is different and the same.
- Draw a gird of rows and columns and ask them if this is still a rectangle. Then look at how many rows and columns the rectangle has, introducing the vocabulary or rows, columns and array as you go along.
- Ask the learners how many squares in the grid and ask how they worked it out. Also ask them if they could share a sum to show how they worked it out. At this point I often get the typical mix of responses as shown to the right. We talk about the multiplication sums as being a quicker way to represent the repeated addition.
- Then go outside the classroom and I look for an array in the vicinity, normally a window or gate. I point out to the learners that this is an array and physically point out the rows and columns. Ask them how many shapes in the array.
- In a window such as the example shown, we discuss why the two panes at the top are not considered to be an array as they do not make a rectangle or square and they have curved

sides.

- Go on a scavenger hunt around the school or the local area to find as many arrays as possible, each time working out the rows and columns and the total.

	Maths Club Whole Session Planning Sheet		Sessi	
Purpose of the sessio // object of learning	More exposure to arrays.			
What resources / manipulatives will you need?		Home sharing/ Pay It Forward task		
- BUILD ARRAYS: 1 dice per pair, counters (bottle tops), scrap paper and pencils - NUMBER SENSE: Whiteboard, blackboard or flipchart - ARRAY HOORAY: Playing cards (or counters), scrap paper and pencils		Play BUILD ARRAYS at home		
Organisational requirements		Your approach to running the session		
1- NUMBER SENSE: individual then whole group 1- BUILD ARRAYS: Learners work in pairs 1. ARRAY HOORAY: Learners work in pairs				
Number sense: DOUBLES AND HALVES (x2 and $\div 2$) - 10 to 15 minutes (GRADES 1, 2 and 3)				
\| Draw this grid on the board or flipchart. Ask these questions. I- Find numbers which are double another number on the grid 1- Find numbers which are half of another number on the grid 1. Which numbers do not have a double? 1. Which numbers do not have a half in the grid?			8	2
			9 48	24
			5	3
Game: BUILD ARRAYS - 20 minutes (GRADE 1,2 and 3)				
1- One learner rolls the dice twice - The first number rolled tells how many rows to make in an array. - The second number rolled tells how many counters to put in each row of your array (to make up the columns) FOR EXAMPLE: If a learner rolls a 2 and then a 5 , they might make an array like this \rightarrow Learners must draw each array made, recording how many rows, how many columns, and how many counters altogether. Encourage them to write either a repeated addition sum or a multiplication sum for each array FOR EXAMPLE $2 \times 5=10 ; 5 \times 2=10 ; 2+2+2+2+2+2=10 ; 5+5=10$				
Activity: ARRAY CARD LAYOUTS - 20 minutes (GRADES 1, 2 and 3)				
1- Divide a pack of cards into piles of 12. If you have sufficient counters or bottle tops, use those instead. 1- Learners works in pairs 1- Remind learners about the structure of an array: always a rectangle or square, equal items in each row and column 1. Learners must build as many different arrays as possible with ALL of their 12 cards 1- After building each array, they must write down the number of rows and columns the array has, and the total number of cards, which should always be 12. 1. After all the arrays of 12 have been explored, and if there is time, split the cards into piles of 18 or 24 and repeat.				
Arrays with $\mathbf{1 2}$ cards $\left\{\begin{array}{l} 12 \times 1 ; 1 \times 12 \\ 6 \times 2 ; 2 \times 6 \\ 4 \times 3 ; 3 \times 4 \end{array}\right.$	Arrays with 18 cards$\begin{aligned} & 18 \times 1 ; 1 \times 18 \\ & 9 \times 2 ; 2 \times 9 \\ & 6 \times 3 ; 3 \times 6 \end{aligned}$		Arrays with 24 cards $\begin{aligned} & 24 \times 1 ; 1 \times 24 \\ & 12 \times 2 ; 2 \times 12 \\ & 8 \times 3 ; 3 \times 8 \\ & 6 \times 4 ; 4 \times 6 \end{aligned}$	

	Maths Club Whole Session Planning Sheet		Session Thirteen	
P Purpose of the session / object of learning	Further work with arrays in different formats. Grade 2 and 3 work with drawn representations on the ARRAY HOORAY activity which introduces some early division using arrays.			
\|What	nipulatives will you need?	Home sharing/ Pay It Forward task		
- BEE ARRAYS: 2 dic kokis, cloths - ARRAYS HOORAY sleeves, kokis and	ies of the activities in plastic	Homework books		
Organisational req	irements	Your approach to running the sess		
- BEE ARRAYS: Play	pairs			
Mental: FIZZ POP WITH DOUBLING and $2 \times$ TABLE - 10 minutes (GRADES 1, 2 and 3)				
- Start with DOUBLING. Say "I will say a number and you must double it". - The game starts with leader saying "FIZZ", club responds with "POP" - Say the number and club responds. E.g. " 5 " and club responds with "10" - These are good sequences to use: $2,4,8,16,32 \ldots$ or $3,6,12,24,48 \ldots$ keep going until the learn go any further. - If you get an answer with the harder numbers, ask the learner to share their method, then ask gr the method for the next number. Repeat with $2 x$ table (Optional for Grade 1) Say "I will say a number and you must times it by two". - Use the above sequence - Can learners see the connection between doubling and multiplying by two?				
Game: BEE ARRAYS - 25 minutes (GRADES 1,2 and 3)				
AIM: to get 3 or 4 hexagons touching to each other in a line or other configuration as shown on the game bo [(3 will take less time and may be more accessible for Grade 1 learners) 1. $\quad 1^{\text {st }}$ learner throws both dice e.g. 2 and 3 1. Learner looks on the game board for a 2×3 or 3×2 array. If there is one available, mark the hexagon with initials or name 1. Next learner takes a turn 1. $1^{\text {st }}$ learner to mark 3 or 4 hexagons in a line or other configuration, wins				
Activity: FIND ARRAYS-25 minutes (GRADES 1,2 and 3)				
AIM: learners identify the arrays in the pictures and complete the tables on each activity sheet				
EXTENSION If there is time, you could follow up with ;some questions to extend the activity: \|SHEET 1 1. What is the same about each array on this page? (Looking for a connection that each one has two rows) How much fruit altogether on the page? (Encourage the learners to add up the totals for all the fruit items) Can you find a quick way to work out how many wheels there are on the page?				
1. How many animals altogether on the page? (Encourage the learners to add up the totals for all the animals, including the frog) How many insects altogether on the page? (Encourage the learners to add up the totals for all the insects) Can you find a quick way to work out how many human legs there are on the page? How many monkey / frogs / chicken / fly legs? 1- Can you find a quick way to work out how many eyes (human, animal and insect) there are on the page?				

1	Maths Club Whole Session Planning Sheet		Session Fifteen
I Purpose of the session / object of learning	In this final session, the 4 operations assessment is re-administered and the session finishes with something fun.		
What resources / manipulatives will you need?			
1- NUMBER SENSE: Black/whiteboard or flipchart, scrap paper and pencils 1- ASSESSMENT: 1 copy of assessment scripts per learner, plus 1 for yourself 1- MAZES: Activity in plastic sleeves, kokis, cleaning cloths			
Organisational requirements		Your approach to running the session	
1- NUMBER SENSE: individual then whole group - ASSESSMENT: individual work 1- MAZES: individual work		This is the final club session, so do the assessment and then finish off with something fun.	
\|Number sense: "TWELVE" or "TWENTY FOUR" - 15 minutes			
IGRADE 1 1. Write the number 12 on the board or flipchart - Give learners 5 minutes to come up with at least two ways to make 12 using addition, subtraction and if possible multiplication or an array. They can come up with more if they wish.		GRADES 2 \& 3 - Write the number 24 on the board or flipchart - Give learners 5 minutes to come up with at least one way to make 24 using addition, subtraction and if possible multiplication and division. They can come up with more if they wish.	
1. Ask for contributions and write them on the board in a way that emphasises patterns (see example for 16 to the right), asking learners if they agree with the contribution. 1. When you write a contribution on the board, always get them to check their list and tick off if they have the same idea.			(enter

Activity: ARRAY SCAVENGER HUNT - 25 minutes

- Draw a rectangle on the board. Ask the learners what shape it is, and discuss the differences
between squares and rectangles.
- Draw a gird of rows and columns and ask them if this is still a rectangle. Then look at how many
rows and columns the rectangle has, introducing the vocabulary or rows, columns and array
as you go along.
- Ask the learners how many squares in the grid and ask how they worked it out. Also ask them if
they could share a sum to show how they worked it out. At this point I often get the typical mix
of responses as shown to the right. We talk about the multiplication sums as being a quicker
way to represent the repeated addition.
- Then go outside the classroom and l look for an array in the vicinity, normally a window or
gate. I point out to the learners that this is an array and physically point out the rows and
columns. Ask them how many shapes in the array.
- In a window such as the example shown, we discuss why the two panes at the top are not
considered to be an array as they do not make a rectangle or square and they have curved
sides.
- Go on a scavenger hunt around the school or the local area to find as many arrays as possible, each time
working out the rows and columns and the total.

[^0]

ACTIVITY MASTER COPIES

In this section you will find the master copies for the activities used in the planning sheets above for both the Foundation and Intermediate Phases. You may photocopy these.

To save paper, it is suggested that you copy a set for the club:

- 12 if the activity is for individual work
- 6 if the activity is for pair work

Put them into plastic sleeves (or laminate for extra durability) Learners use dry-wipe markers to work on the sleeve.

FP AN APPLE A DAY

Source: http://www.nzmaths.co.nz/resource/apple-day?parent_node=

IP 2, 4 and 8 I have who has loop cards

管	TABLES 2, 4 d 8 - 20 CARDS START I have 6 Who has 6×4		I have 24 Who has 6×8	
	I have 48 Who has 5×4		I have 20 Who has 5×8	
	I have 40 Who has 4×4	\|l	l	I have 16 Who has 4×8
	I have 32 Who has 7×4		I have 28 Who has 7×8	
	I have 56 Who has 9×2		I have 18 Who has 8×8	

	为	mamereme	,	,

IP 3, 6 and 12 I have who has loop cards

	TABLES 3, 6 \& 12 - 20 CARDS START I have 66 Who has 3×3	I have 9 Who has 3×6
	I have 18 Who has 3×12	I have 36 Who has 5×3
	I have 15 Who has 5×6	I have 30 Who has 5×12
	I have 60 Who has 7×3	I have 21 Who has 7×6
	I have 42 Who has 7×12	I have 84 Who has 8×3

	I have 24 Who has 8×6	I have 48 Who has 8×12
	I have 96 Who has 9×3	I have 27 Who has 9×6
	I have 54 Who has 9×12	I have 108 Who has 2×3
2	I have 6 Who has 2×6	I have 12 Who has 10×12
	I have 120 Who has 11×3	I have 33 Who has 11×6

$\frac{0}{2}$	START - 20 CARDS I have 19 Who has double 6	I have 12 Who has half of 10
	I have 5 Who has double 10	I have 20 Who has half of 6
	I have 3 Who has double 4	I have 8 Who has half of 12
	I have 6 Who has double 8	I have 16 Who has half of 18
	I have 9 Who has double 5	I have 10 Who has half of 14

	I have 7 Who has double 9	I have 18 Who has half of 2
	I have 1 Who has double 7	I have 14 Who has half of 4
	I have 2 Who has double 11	I have 22 Who has double $6+1$
	I have 13 Who has double $5+5$	I have 15 Who has double $7+3$
	I have 17 Who has double $5+1$	I have 11 Who has double $9+1$

START-20 CARDS I have 19 Who has double 10	I have 20 Who has half of 24
I have 12 Who has double 25	I have 50 Who has half of 50
I have 25 Who has double 3	I have 6 Who has half of 16
I have 8 Who has double 7	I have 14 Who has half of 10
I have 5 Who has double 5	I have 10 Who has half of 14

100	33	70	42	48
90	24	18	14	45
25	16	30	63	22
36	60	84	81	28
96	44	72	121	144

32	22	56	84	45
18	13	96	60	44
40	72	10	48	49
90	39	108	52	36
55	12	26	100	99

IP Grid Method: $\mathbf{2 \times 1}$ digit

IP Grid Method: 2×2 digits

IP Grid Method 3×1 digit

IP Grid Method: 3×2 digits

1. \qquad x \qquad $=$ \qquad 6. \qquad x \qquad $=$ \qquad
2. \qquad 7. \qquad X \qquad $=$ \qquad
3. \qquad x \qquad $=$ \qquad
4. \qquad x \qquad
\qquad
5. \qquad x \qquad
\qquad
6. \qquad X \qquad $=$ \qquad 10. \qquad x \qquad $=$ \qquad

Number Patterns Investigations 5 \& 10
Count in fives - colour the block
Count in tens - put an X in the block

1									

Count in twos - colour the block
Count in fours - put an X in the block

Count in eights -put a line around the block									
1									

Number Patterns Investigations 3, 6 \& 12
Count in threes - colour the block
Count in sixes - put an X in the block
Count in twelves - put a line around the block

$\mathbf{1}$	Count in twelves - put a line around the block								

Find the patterns for the missing numbers and complete the grid

			12	15	18		
				20			
	10	15	20			31	
	12				33	36	39
	14						
8		24			53		59
			28	38			

Fill in the numbers for the blank squares only

101	102		104	105	106		108	109	110
	112		114		116	117	118		120
121		123		125	126	127		129	
	132			135			138		
141		143	144		146	147		149	
	152			155			158		160
161		163		165		167	168	169	170
			174		176		178		180
181	182			185	186	187		189	
	192				196		198		200
201		203	204			207		209	
211			214	215			218		

RDD \& MULTIPLY PUZZLES

The 2 numbers in the middle
Add together to make the answer in the bottom box. In this example $3+4=7$
Are multiplied to give the answer in the top box. In this example $3 \times 4=12$
TRY THESE. The 1st 2 examples are to get you started. The next few will make you think a little more.

Top answer: $3 \times 4=12$

Bottom answer: 3+4 = 7

Now, make up some of your own.

MULTIPLICRTION SQURRES
Multiply the numbers across the top with the numbers down the side. One example has been done e.g. $3 \times 20=60$. In the last one, you are given some answers and you need to work out the numbers for the row and column.

x	2	5	3									
20			60	x	4	5	2					
10												
25												
15								\quad	x	3		5
:---:	:---:	:---:	:---:									
10		20										

| x | 4 | 5 | 2 | 3 | 5 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | | | | | | | |
| 3 | | 15 | | | | | |
| 1 | | | | | | | |
| 0 | | | | | | | |
| 2 | | | | | | | 0 |
| 10 | | | | | 50 | | |

Choose a multiplication fact to match the arrays. Then say how many al

3×3	4×4	3×12	4×6	2×8	5×4
4×2	2×2	4×3	4×8	5×2	3×2
3×4	3×6	2×4	4×12	3×8	5×8

IP ARRAY HOORAY (2) - Use the arrays to write different types of facts.

FP ARRAY HOORAY (1) - Match the multiplication fact to the array
Choose a multiplication fact to match the arrays. Then say how many altogether in each array.

4×3	4×2	3×4	2×2	4×5
5×3	3×2	5×4	2×4	5×2
2×5	4×4	2×3	5×5	3×5

FP ARRAY HOORAY (2) - Use the arrays to write different types of facts.

This array shows...	Write an addition fact for this array	Write a multiplication fact for this array	Write another multiplication fact for this array	Show how to split the array into equal parts
	$3+3+3+3+3=15$	$3 \times 5=15$	$5 \times 3=15$	Split into 3 equal parts
rows x columns				Split into 4 equal parts
rows x \qquad columns				 a Split into 6 equal parts
rows x columns				
rows x \qquad columns				
				Split into 2 equal parts
rows X \qquad columns				

IP 2, 4, 8 SCORECARDS

FIND THE ARRAYS IN THE PICTURE (1)
FILL IN THE GRIDS

FRUIT	ROWS	COLUMNS	TOTAL

FRUIT	ROWS	COLUMNS	TOTAL

HELP THE RABBIT TO FIND HIS CARROT. COUNT FORWARDS IN 2s UP TO 20

HELP THE MONKEY TO FIND HIS BANANA. COUNT FORWARDS IN 5s UP TO 50

8	4	6	8	9	10	3	8	6	
6	18	2	20	2	11	6	5	20	
5	10	6	18	16	14	40	10	8	END
START	24	15	17	14	35	10	45	50	0
	4	20	1	30	5	4	6	4	2
0	12	6	25	12	11	10	17	18	9
0	3	16	3	1	3	19	18	13	12
2	4	5	7	8	9	1	2	8	19

FP SKIP COUNTING MAZES CONTINUED
HELP THE MOUSE TO FIND HER CHEESE. COUNT FORWARDS in 10s UP TO 100

29	4	6	8	18	17	16	8	60	8 25
23	10	9	19	11	15	5	10		
24	20	30	21	20	10	14	90	100	END
10	73	15	40	50	100	19	80	21	10
START	140	10	100	51	60	70	40	30	20
90	40	22	20	90	60	50	40	90	100

HELP THE CHICKEN TO FIND HER EGG. COUNT FORWARDS IN 3S UP TO 30

	4	6	8	9	16	14	12	10	0
	6	10	9	8	18	6	5	8	5
START	4	9	1	26	24	3	6	27	30
3	6	32	30	28	11	2	1	0	END
0	4	16	3	1	15	20	21	10	6
2	4	5	7	8	9	1	2	2	8

[^0]: 1 http://www.ru.ac.za/sanc/teacherdevelopment/niclegr3-42011-2015/nicle2014/nicle2-14

