"Pushing for Progression" in number sense and fluency Maths Club Development Programme

Addition and Subtraction

Name

School

District

Declaration

This booklet is not sold or used for profit making. It is used solely for educational purposes. You may photocopy pages if you wish.

2016 South African Numeracy Chair Project, Grahamstown, South Africa www.ru.ac.za/sanc
Last updated: 24 ${ }^{\text {th }}$ April 2016

To cite this document:

South African Numeracy Chair Project. (2016). "Pushing for Progression" in number sense and fluency Maths Club Development Programme: Session Two Teacher Handbook. Grahamstown, South Africa: South African Numeracy Chair Project (Rhodes University).

Table of contents

The big ideas in addition and subtraction 3
Progression in addition and subtraction 4
Count all 4
Advanced counting-by-one strategies 4
Adding and subtracting fit together using a whole-part-part structure 5
Introductory story 5
Types of addition and subtraction problems 6
Club sessions 4 to 9: mathematical focus 7
Overviews 8
Foundation Phase 8
Intermediate Phase 8
Foundation Phase session plans 9
Intermediate Phase session plans 15
ADDITIONAL TEACHER ACTIVITY INFORMATION 21
Target number combinations for number sense sessions 21
Beach ball activity 22
ACTIVITY MASTER COPIES 23
FP FIND SUBTRACTION SUMS 24
BUILD A SNAKE DIRECTION CARDS 25
ALL PHASES ROLL AND FILL 26
FP NUMBER SEARCHES (1) 27
FP NUMBER SEARCHES (2) 28
FP NUMBER SEARCHES (3) 29
FP PUZZLES 30
FP JOINING NUMBERS 31
IP PATTERNS 34
FP JOINING NUMBERS 35
IP JOINING NUMBERS 38
IP CROSS OUT SINGLES 39
IP ALPHABET NUMBER WORDS 40

The big ideas in addition and subtraction

In this series of club sessions, we focus on some of the big ideas in addition and subtraction.

1. Thinking of part-part-whole relationships is helpful in linking addition and subtraction. This encourages learners to understand that addition and subtraction have a reciprocal relationship.

For example, where the whole is 6 , and 4 and 2 are parts. This means that 4 and 2 together form the whole, which is 6.6 subtract 4 leaves the 2 and 6 subtract 2 leaves the 4.
2. Understanding that addition of two or more numbers can be done in any order is important to support children's fluency. When adding two numbers it can be more efficient to put the larger number first. This encourages a 'count on' strategy which is discussed in more detail below.

For example, for $3+8$ it is easier to calculate $8+3$.
3. When adding three or more numbers it is helpful to look for pairs or groups of numbers that are easy to add using known facts. These can be called friendly numbers. A friendly number is normally 10 or a decade number.

For example, with $5+8+2$, it is easier to rearrange the numbers to add $8+2$ first to make a 'friendly' 10 than to begin with $5+8$.
4. Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20.

For example, with $8+7$, thinking of 7 as $2+5$ and adding the 2 to 8 to make 10 and then the 5 to total 15 .
5. Understanding the importance of the equals sign meaning 'equivalent to' (i.e. that 6 $+4=10,10=6+4$ and $5+5=6+4$ are all valid uses of the equals sign) is crucial for later work in algebra.

Empty box problems can support the development of this key idea. Correct use of the equals sign should be reinforced at all times. Altering where the equals sign is placed develops fluency and flexibility.

Progression in addition and subtraction

Count all

When presented with an addition problem such as $5+3$, some children may count from one - "one, two, three, four, five - six, seven, eight!" This is referred to as Count All.

Advanced counting-by-one strategies

With addition and subtraction problems, children generally advance from counting all to count on strategies. These can be seen as four counting-by-ones strategies:

1. Count up from
2. Count up to
3. Count down from
4. Count down to

Count-up-from: addition	Count -up-to: addition Example: 6 plus what equals 9 or $6+\square=9$ Example: 6 plus 3 "Six, ... seven, eight, nine, ... nine!"
With this scenario, the number to count on is known in advance.	"Six, ... seven, eight, nine, ... three!" The essential feature is that the student counts on from "six". This strategy involves keeping track of counts but the student does not know in advance the number of counts.
Count -down-from: subtraction	Count-down-to: subtraction Example: 9 take away what equals 6 or $9-\square=6$ Example: 9 take away 3 "Nine, ... eight, seven, six, ... six!" This strategy involves keeping track of backward and the student knows in advance the number of counts.
"Nine, ... eight, seven, six, ... three!"	
This strategy involves keeping track of backward	
counts. The student knows in advance where he	
or she is counting to..	

Constrained methods Inefficient (I)	Somewhere in between (IE)		Flexible fluency Efficient (E) Use of known addition and subtraction facts, appropriate use of algorithms for 2 and 3 digit problems	
Use of fingers, tally marks, circles, drawings of any kind	Breaking down into place value, using some kind of expanded notation	Another strategy such as splitting, working with a friendly number		
Look for these specific addition and subtraction strategies and encourage learners to try using more efficient ones				
Count all	Count Count up	down to own from		

Adding and subtracting fit together using a whole-part-part structure

Whole	
Part A	Part B

$$
\begin{array}{ll}
\text { Part A + Part B }=\text { Whole } & \text { Whole }- \text { Part A }=\text { Part B } \\
\text { Part B + Part A }=\text { Whole } & \text { Whole }- \text { Part B }=\text { Part A }
\end{array}
$$

Learners should be able to write down all the equivalent number sentences for any addition or subtraction fact.

80	
70	10

If $80-70=10$ then the following are also true:

$$
\begin{array}{ll}
70+10=80 & 80=70+10 \\
10+70=80 & 80=10+70 \\
80-70=10 & 10=80-70 \\
80-10=70 & 70=80-10
\end{array}
$$

There are always 8 ways to write any addition and subtraction fact. Learners can use this to be flexible about how they calculate. For example, working with 305-298 = a , may be easier for them than $298+\square=305$.

Introductory story

Today I want to tell you about a boy named Siya, who loves to play marbles with his friends at school.

Every day, Siya puts his 5 favourite marbles in the front pockets of his school trousers so that he remembers to take them to school.

On some days, Siya puts all his marbles in one pocket. And on other days, he puts all his marbles in the other pocket. Most of the time, he uses both pockets and puts some marbles in each one.

Let's look at the ways the Siya can tell stories about his marbles.

Types of addition and subtraction problems

[^0]
Club sessions 4 to 9: mathematical focus

The overall object of learning for this series of clubs is detailed on this page. The activities detailed in this booklet help to focus on these big ideas and are intended to help you as the club leader to encourage learners to progress from counting all to more efficient strategies for addition and subtraction.
At the start of each session, check the PURPOSE OF THE SESSION / OBJECT OF LEARNING and APPROACH TO RUNNING THE SESSION boxes at the top of each planning sheet to set your focus for each session.

Club Overviews: Session 4 to 9
 Page: 8

Foundation Phase
Intermediate Phase

Club Overviews: Session 4 to 9 Page: 8	
Foundation Phase	Intermediate Phase
Session Four	Session Four
Page: 9	Page: 15
Session Five	Session Five
Page: 10	Page: 16
Session Six	Session Six
Page: 11	Page: 17
Session Seven	Session Seven
Page: 12	Page: 18
Session Eight	Session Eight
Page: 13	Page: 19
Session Nine	Session Nine
Page: 14	Page: 20

Object of learning for all these sessions:

- Emphasis on the part-part-whole relationships is inherent in all activiteis in linking addition and subtraction.
- Emphasise that addition of two or more numbers can be done in any order is important to support children's fluency. When adding two numbers it can be more efficient to put the larger number first to encourage 'counting on'.
- Emphasis that when adding three or more numbers it is helpful to look for pairs of numbers that are easy to add. For example, given $5+8+2$ it is easier to add $8+2$ first than to begin with $5+8$.
- All card and dice games are intended to promote learners' fluency in using number facts

Overviews

The session overviews are shown here for Grade 1 through to the IP grades. This means that if you encounter a learner who needs to be extended or remediated in your clubs, you have access to other activities that can be useful.

Foundation Phase

Grade 1

	Session 4	Session 5	Session 6	Session 7	Session 8	Session 9
	Timings based on a 60 minute club					
Mental warmup	Fizz Pop (doubling and halving up to $10 / 20$)	Fizz Pop (number before/after)	Fizz Pop (how many to make 10)	Patterns: what comes next?	FINDING 10 or 12	Fizz Pop (how many to make 10/20)
Time	5 mins	5 mins	5 mins	10 mins	15 mins	5 mins
Games	DOUBLES \& NEAR DOUBLES	TEN!	ADD 3 CARDS (Numbers to 15)	SALUTE		PYRAMID CARD GAME (add to 10)
Time	15 mins	30-40 mins	15 mins			20 mins
Activities	ROLL \& FILL Part-part-whole (with numbers up to 10/20)	NUMBER SEARCHES	BUILD A SNAKE	FACES \& GRID PUZZLE	JOINING NUMBERS	PYRAMID SUMS (3 LEVELS) (with 1 digit numbers in bottom row)
Time	$30-40$ mins	20 mins	$30-40$ mins	30 mins	$30-40$ mins	30 mins
Pay it Forward	DOUBLES \& NEAR DOUBLES	TEN! (Grocotts 9)	ADD 3 CARDS (Numbers to 15)			PYRAMID CARD GAME (add to 10)
Take home work	Homework book(s)					

Grades 2 and 3

	Session 4	Session 5	Session 6	Session 7	Session 8	Session 9
	Timings based on a 60 minute club					
Mental warmup	Fizz Pop (doubling and halving up to $10 / 20$)	Finding 20	Fizz Pop (how many to make 10)	Patterns: what comes next? (Grocotts 6)	Finding 24	Fizz Pop (how many to make 10/20)
Time	5 mins	15 mins	5 mins	10 mins	20 mins	5 mins
Games	DOUBLES \& NEAR DOUBLES (Grocotts 10)	TEN!	ADD 5 CARDS (Numbers to 30)	SALUTE		PYRAMID CARD GAME (add to 13, 15 etc)
Time	15 mins	20 mins	15 mins	20 mins		25 mins
Activities	ROLL \& FILL Part-part-whole (with numbers up to 30)	NUMBER SEARCHES	FIND SUBTRACTION SUMS	FACES \& GRID PUZZLE	JOINING NUMBERS	PYRAMID SUMS (3 LEVELS) (with 1 and 2-digit numbers to 15 in bottom row)
Time	$30-40$ mins	20 mins	30-40 mins	20 mins	30-40 mins	30 mins
Pay it Forward	DOUBLES \& NEAR DOUBLES	TEN!	ADD 5 CARDS (Numbers to 30)			PYRAMID CARD GAME (add to 13, 15 etc)
Take home work	Homework book(s)					

Intermediate Phase

	Session 4	Session 5	Session 6	Session 7	Session 8	Session 9
	Timings based on a 60 minute club					
Mental warmup	Fizz Pop (doubling and halving)	Finding 50	Fizz Pop (how many to make 50)	Patterns: what comes next?	Finding 70	Fizz Pop (how many to make 100)
Time	5 mins	15 mins	5 mins	10 mins	15 mins	5 mins
Games	ADD 5 CARDS	SALUTE	FLIP OUT			
Time	15 mins	15 mins	15 mins			
Activities	ROLL AND FILL Part-part-whole (with numbers 50 and bigger)	CROSS OUT SINGLES	PYRAMID SUMS (3 \& 4 LEVELS) (with 1 and 2-digit numbers up to 99 in the bottom row)	PATTERNS	JOINING NUMBERS	ALPHABET NUMBER WORDS
Time	30-40 mins	30-40 mins	$30-40 \mathrm{mins}$	30-40 mins	30-40 mins	40.50 mins
Pay it Forward	ADD 5 CARDS		FLIP OUT			ALPHABET NUMBER WORDS
Take home work	Homework book(s)					

Foundation Phase session plans

IP	Maths Club Whole Session Planning Sheet				Session Four
\| Purpose of the session / lobject of learning	The object of learning in this session is to help learners to understand the reciprocal relationship between addition and subtraction.				
What resources / manipulatives will you need?		Home sharing/ Pay It Forward task			
. Chalk / blackboard for showing learner workings 1- ADD 5 CARDS: Packs of cards		Give the learners a pack of cards to take home. Explain that these belong to them and are for playing maths club games. Ask them to play ADD 5 CARDS at home.			
Organisational requirements		Your approach to running the session			
- ADD 5 CARDS: Pair work		Demonstrate the Roll \& Fill activity to the whole group $1^{\text {st }}$ using the stories on page 6			
\|Mental: FIZZ POP DOUBLES AND HALVES - 5 minutes					
1- Start with doubling. Say "I will say a number and you must double it". - The game starts with leader saying "FIZZ", club responds with "POP" - Say the number and club responds. E.g. " 5 " and club responds with " 10 " - These are good sequences to use: $2,4,8,16,32 \ldots$ or $3,6,12,24,48 \ldots$ keep going until the learners cannot go any further. - If you get an answer with the harder numbers, ask the learner to share their method, then ask group to try the method for the next number. Move onto halving - Useful sequence: $80,40,20,10,5,2 \frac{1}{2}, 11 / 4 \ldots$ keep going... ask for methods					
Game: ADD 5 CARDS - 15 minutes					
OBJECT OF LEARNING: 1 and 2-digit addition and addition strategies Learners work with a partner using 1 pack of cards. \|King = 13, Queen = 12, Jack = 11, Ace = 1 Deal out 5 cards face up as shown (or start with 3 cards first) hbFKX Both players mentally add up the values of the cards. For this example, the total would be 38 - Check each other's totals and discuss the strategies used to add 1- Play again with 5 different cards			Formative assessment aspects Observe the following		
				Social - Listening to each other - Checking each others answers	Mathematical - Learners are working mentally - Using strategies to group numbers together
Activity: ROLL AND FILL - 30 to 40 minutes					
I Object of learning: Understanding the reciprocal \|relationship between addition and subtraction and the role lof the equal sign Each learner is provided with the whole-part grid (see ibelow) and two dice 1. They roll both dice		8		Write sums here	$8-3=5$ $8-5=3$
		3	5	相 $\begin{aligned} & 8=5+3 \\ & 8=3+5\end{aligned}$	$5=8-3$ $3=8-5$
1. Write the two numbers rolled in the bottom of the whole-part diagram. 1- Add the two numbers together and write the total at the top of the diagram. 1- They must write all the number sentences they can as demonstrated on page 7 above.					
ALTERNATE WAYS TO GENERATE NUMBERS 1- See options at the bottom of the learner activity sheet					

	Maths Club Whole Session Planning Sheet			Session Five	
i Purpose of the sessio // object of learning	The focus here is on fluency with adding numbers as well as working with number ranges using less than, more than and between which is often an area of struggle.				
What resources / manipulatives will you need?		Home sharing/ Pay It Forward task			
1. Have the grid of numbers to write up for number sense activity - SALUTE: Pack of cards per three players - CROSS OUT SINGLES: Laminated game boards, kokis, cloth, pencils and scrap paper		Play SALUTE with people at home			
Organisational requirements		Your approach to running the session			
- NUMBER SENSE: NUMBER SENSE: Individual and then group 1- CROSS OUT SINGLES: work in pairs					
Number sense: COMBINATIONS THAT ADD TO 50-15 minutes					
\| Put these numbers up on the board / flipchart for the learners They must look for combinations of numbers that make 50 using	addition only Example: $22+8+20$ After 10 minutes, gather contributions from learners and write them I on the board. Try not to judge if right or wrong - let the club learners take responsibility for doing that.				
GAME: SALUTE - 15 minutes					
- Play with a pack of cards using only the cards 2 to 10. Play with 3 players 1- Dealer deals one card each, face down. 1. When the dealer says "salute", each player raises the card to his or her forehead. The dealer states the total of the cards. 1. Each player has to determine the value of the card being held to his or her forehead by looking at the other person's card and subtracting this amount from the total.					
Activity: CROSS OUT SINGLES - $\mathbf{3 0}$ to 40 minutes					
t Learners play with a partner. They need a dice. Use the laminated game boards 1. One player rolls the dice - BOTH players write the number in one of the squares in their grid - Another player rolls the dice 1. BOTH players write the number on their grid 1. Continue until all squares are filled TO WORK OUT SCORES 1. Add up the numbers in rows, columns and diagonal and write them in the circles - Any answer that is shown once, must be crossed out 1. Add up all the other answers to get a total - Then work out final score using the guidelines 1. Play 2 more games - Add up all scores					

ADDITIONAL TEACHER ACTIVITY INFORMATION
Target number combinations for number sense sessions

Beach ball activity

If you have access to a plastic beach ball, you can use it as part of a mental warmup session.

You can use it to practice bonds to $10,20,30$ or 100 , doubling and halving and so on.

- Decide what you would like to practice.
- Using a dry wipe marker, write a number of sums on the ball, about a hands width apart.
- Throw the ball to a learner who must catch it and answer the question that is closest to their right hand.
- If the learner gets the answer correct, they get to throw the ball to another learner.
- If they get the answer wrong, they must throw the ball back to you and you throw it to another learner.
- Keep throwing the ball until everyone has had a turn.

ACTIVITY MASTER COPIES

In this section you will find the master copies for the activities used in the planning sheets above for both the Foundation and Intermediate Phases. You may photocopy these.

To save paper, it is suggested that you copy a set for the club:

- 12 if the activity is for individual work
- 6 if the activity is for pair work

Put them into plastic sleeves (or laminate for extra durability) Learners use dry-wipe markers to work on the sleeve.

FP FIND SUBTRACTION SUMS

How many subtraction sums can you find in the grid?
Some go across and back. Some go up and down. Some go diagonally.
Circle the ones you can find. Write down all the subtractions you can see.

8	5	3	11	1	10	49
4	17	9	4	26	43	15
4	11	4	7	6	13	34
24	19	5	14	20	29	17
15	33	40	6	41	9	13
9	28	7	8	5	20	8
6	5	1	26	20	6	21

Add 3 more	Take away 4	+2
Add 4 more	-2	Take away 5
-1	+1	Add nothing
Take away nothing	Plus 4	Plus 5
+3	-3	Plus 1
Minus 1	+0	-0

ALL PHASES ROLL AND FILL

	Phole	Write sums here $\begin{array}{ll} 3+5=8 & 8-3=5 \\ 5+3=8 & 8-5=3 \\ 8=5+3 & 5=8-3 \\ 8=3+5 & 3=8-5 \end{array}$	Whole Part Part	Write sums here
	Whole	Write sums here	Whole	Write sums here
	Whole	Write sums here	Whole	Write sums here
	Whole	Write sums here	Whole	Write sums here
Ways to fill in numbers for the 'part's	1. Roll 2 dice. Put one number in each PART box	2. Roll 1 normal dice. Roll a 1-20 dice. Put one number in each PART box	3. Close your eyes. Choose 2 random numbers from a 100 chart. Put one number in each PART box	4. Choose 2 random numeral cards. Put one number in each PART box
Ways to fill in numbers for the 'whole's	1. Roll 2 dice. Add them together. Put the number in the WHOLE box	2. Roll a 1-20 dice. Put the number in the WHOLE box	3. Choose 1 random number from a 100 chart that is bigger than 50 . Put the number in the WHOLE box	4. Choose 1 random numeral card. Put the number in the WHOLE box

Find 2 numbers which add up to 10. The numbers must touch each other.
One has been done for you

10	0	11	7	5	9	5	5
2	3	8	3	3	1	4	6
11	7	12	8	2	5	3	7
1	0	7	11	0	5	2	8
9	10	3	10	6	3	3	6
2	13	6	3	8	4	7	9
6	7	12	10	1	2	1	8
2	4	4	11	1	9	3	7

Find 2 numbers which add up to $\mathbf{2 0}$. The numbers must touch each other. One has been done for you

9	11	10	6	3	17	15	5
2	6	4	13	7	10	10	4
18	8	12	5	6	0	20	16
0	20	3	17	14	19	2	18
13	4	16	10	1	6	14	9
5	15	11	9	12	8	19	1
13	1	3	10	10	1	8	3
7	19	2	8	4	5	2	17

Find 2 numbers which add up to $\mathbf{3 0}$. The numbers must touch each other.
One has been done for you

19	11	10	6	13	17	15	15
22	6	14	23	7	20	10	24
8	18	12	4	26	0	30	6
0	30	23	7	29	19	22	8
13	14	16	10	1	16	14	9
15	15	11	19	12	8	29	21
13	11	3	10	20	25	28	13
17	19	12	26	4	5	2	17

Give each face a name

These are the faces of SAM, SINO AND SIYA.

Use the clues to work out which name goes with each face.

Clues

- Sino and Siya are smiling
- Siya and Sam have big noses
- Sam is sad
- Sino has hair
- In this grid, each shape stands for a number.
- The numbers shown are the totals of the line of three
numbers in the row or column.
- Find the remaining totals.
- Say what number each shape stands for

Work on your own or with a friend
If you work with a friend, take turns

- Join any four numbers. Find their total.
- Joins can go up, down, across and diagonally.
- The score for the example is $\mathbf{9 + 4 + 9 + 1 4 = 3 6}$.

GRID 1

CHALLENGES

- Find the highest possible score with 4 numbers
- Find the lowest possible score with 4 numbers
- Now try joining five numbers up, down, across and diagonally.
- The score for the example: $\mathbf{1 5 + 1 0 + 3 + 5 + 1 4 = 4 7}$

PYRAMID SUMS: 4 LEVELS

Ways to filil in numbers in the
bottom of the pyramid Wattom of the pyramid Ways to

top of the pyramid | 1. doll 4 dice. Put one number in each box |
| :---: |
| 1. Roll 4 dice. Add them together. Put the number in the top box | 2. Roll 3 normal dice. Rollt a $1-20$ dice. Put one number in each box \mid 2. Roll 3 normal dice. Roll a $1-20$ dice. Add them together. Put the

ACTIVITY 1 - Matchstick Patterns

Talk about the pattern with the learners. Ask them to explain the pattern and try to build or draw the next picture.

- Fill in the table.

SERIES 1
CHALLENGE: Predict the
number of matchsticks needed for the $10^{\text {th }} \& 100^{\text {th }}$ number.

ACTIVITY 2

A shelf stacker at the supermarket has been asked to display the soup tins in the shop window. Each tin must rest on 2 tins underneath it, to make a triangular shape.

If he builds a pile 2 tins wide on the
 bottom row, he has a total of 3 tins in the pile like this:

- How many tins would there be in a pile that has 5 tins on bottom row?
- Fill in the table \& discuss the patterns you see in the table.

Number of tins in bottom row	2	3	4	5	6	10
Number of tins in pile altogether	3					

CHALLENGE

Make up other patterns with matchsticks? Predict how many matchsticks you need for the $10^{\text {th }}$

Work on your own or with a friend
If you work with a friend, take turns

- Join any four numbers. Find their total.
- Joins can go up, down, across and diagonally.
- The score for the example is: $\mathbf{3 5 + 1 5 = 5 0 ; 6 + 4 = 1 0}$ then $50+10=$ 60.

CHALLENGES

- Find the highest possible score with 4 numbers
- Find the lowest possible score with 4 numbers
- Now try joining five numbers up, down, across and diagonally.

PYRAMID SUMS: 4 LEVELS

Ways to filil in numbers in the
bottom of the pyramid Waytom of the pyramid in numbers in the Ways to

top of the pyramid | 1. Aoll 4 dice. Put one number in each box |
| :--- |
| 1. Roll 4 dice. Add them together. Put the number in the top box | 2. Roll 3 normal dice. Rollt a $1-20$ dice. Put one number in each box \mid 2. Roll 3 normal dice. Roll a $1-20$ dice. Add them together. Put the

Work on your own or with a friend
If you work with a friend, take turns

- Join any four numbers. Find their total.
- Joins can go up, down, across and diagonally.
- The score for the example is $\mathbf{9 + 4 + 9 + 1 4 = 3 6}$.

CHALLENGES

- Find the highest possible score with 4 numbers
- Find the lowest possible score with 4 numbers
- Now try joining five numbers up, down, across and diagonally.
- The score for the example: $\mathbf{1 5 + 1 0 + 3 + 5 + 1 4 = 4 7}$

Play with a partner. You need a dice Instructions:

1. One player rolls the dice
2. BOTH players write the number in one of the squares in their grid
3. Another player rolls the dice
4. BOTH players write the number on their grid
5. Continue until all squares are filled

NOW

1. Add up the numbers in rows, columns and diagonal and write them in the circles
2. Any answer that is shown once, must be crossed out
3. Add up all the other answers to get a total
4. Then work out final score using the guidelines
5. Play 2 more games
6. Add up all your scores

EXAMPLE

PLAYER 2

IP ALPHABET NUMBER WORDS

ALPHABET NUMBER WORDS - INSTRUCTIONS

- The goal is to find as many words as you can that add up to EXACTLY 20, 30, 40 or 50
- Choose a word
- Use the chart below to work out the numeric value for each letter
- Add together the letters that make up a word
- FOR EXAMPLE: $\mathrm{TOE}=\mathbf{4 0} \mathbf{(2 0 + 1 5 + 5)}$

If you work with a friend, see if they agree with your adding for each word

ALPHABET AND CORRESPONDING NUMBERS CHART

a	b	c	d	e	f	g	h	i	j	k	l	m
1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbf{n}	o	p	q	r	s	t	u	v	\mathbf{w}	\mathbf{x}	y	z
14	15	16	17	18	19	20	21	22	23	24	25	26

TRY THESE: write the value after each word. Circle the words that that add up to EXACTLY 20, 30, 40 or 50

TOE $=$ 40	HIM $=$	MAP $=$	DIG $=$	KIT $=$	APPLE $=$
WEB $=$	GO $=$	BED $=$	WAX $=$	LION $=$	CHEETAH $=$
MAN $=$	EAT $=$	SAT $=$	JAM $=$	DRAG $=$	STOVE $=$

- What is the value of your name?
- What is the highest value word you can find?

[^0]: Source: Nicky Roberts and http://insideteaching.org/quest/collections/sites/lampkin_sue/additionsubtraction.htm

